A Maximum Entropy Approach to FrameNet Tagging
نویسندگان
چکیده
The development of FrameNet, a large database of semantically annotated sentences, has primed research into statistical methods for semantic tagging. We advance previous work by adopting a Maximum Entropy approach and by using Viterbi search to find the highest probability tag sequence for a given sentence. Further we examine the use of syntactic pattern based re-ranking to further increase performance. We analyze our strategy using both extracted and human generated syntactic features. Experiments indicate 85.7% accuracy using human annotations on a held out test set.
منابع مشابه
Maximum Entropy Models for FrameNet Classification
The development of FrameNet, a large database of semantically annotated sentences, has primed research into statistical methods for semantic tagging. We advance previous work by adopting a Maximum Entropy approach and by using previous tag information to find the highest probability tag sequence for a given sentence. Further we examine the use of sentence level syntactic pattern features to inc...
متن کاملFrameNet-based Semantic Parsing using Maximum Entropy Models
As part of its description of lexico-semantic predicate frames or conceptual structures, the FrameNet project defines a set of semantic roles specific to the core predicate of a sentence. Recently, researchers have tried to automatically produce semantic interpretations of sentences using this information. Building on prior work, we describe a new method to perform such interpretations. We defi...
متن کاملIdentifying FrameNet Frames for Verbs from a Real-Text Corpus
Previous systems that automatically tag text with FrameNet labels have been trained from the FrameNet example data, as there is no FrameNet annotated corpus. The FrameNet data is systematically biased by the criteria for the examples’ selection, as annotators attempt to select simple sentences that include the target word. Instead of using the FrameNet examples, we train a maximum entropy model...
متن کاملA Two-Stage Approach to Chinese Part-of-Speech Tagging
This paper describes a Chinese part-ofspeech tagging system based on the maximum entropy model. It presents a novel two-stage approach to using the part-ofspeech tags of the words on both sides of the current word in Chinese part-of-speech tagging. The system is evaluated on four corpora at the Fourth SIGHAN Bakeoff in the close track of the Chinese part-ofspeech tagging task.
متن کاملUsing distributed word representations for robust semantic role labeling (Utilisation de représentations de mots pour l'étiquetage de rôles sémantiques suivant FrameNet) [in French]
Résumé. D’après la sémantique des cadres de Fillmore, les mots prennent leur sens par rapport au contexte événementiel ou situationnel dans lequel ils s’inscrivent. FrameNet, une ressource lexicale pour l’anglais, définit environ 1000 cadres conceptuels couvrant l’essentiel des contextes possibles. Dans un cadre conceptuel, un prédicat appelle des arguments pour remplir les différents rôles sém...
متن کامل